Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Methods Mol Biol ; 2807: 127-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743225

RESUMO

The initial stages of HIV-1 infection involve the transport of the viral core into the nuclear compartment. The presence of the HIV-1 core in the nucleus triggers the translocation of CPSF6/CPSF5 from paraspeckles into nuclear speckles, forming puncta-like structures. While this phenomenon is well-documented, the efficiency of CPSF6 translocation to nuclear speckles upon HIV-1 infection varies depending on the type of cell used. In some human cell lines, only 1-2% of the cells translocate CPSF6 to nuclear speckles when exposed to a 95% infection rate. To address the issue that only 1-2% of cells translocate CPSF6 to nuclear speckles when a 95% infection rate is achieved, we screened several human cell lines and identified a human a cell line in which approximately 85% of the cells translocate CPSF6 to nuclear speckles when 95% infection rate is achieved. This cellular system has enabled the development of a robust fluorescence microscopy method to quantify the translocation of CPSF6 into nuclear speckles following HIV-1 infection. This assay holds the potential to support studies aimed at understanding the role of CPSF6 translocation to nuclear speckles in HIV-1 infection. Additionally, since the translocation of CPSF6 into nuclear speckles depends on the physical presence of the viral core in the nucleus, our method also serves as a reporter of HIV-1 nuclear import.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , HIV-1 , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , HIV-1/metabolismo , HIV-1/fisiologia , HIV-1/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Núcleo Celular/metabolismo , Linhagem Celular , Infecções por HIV/virologia , Infecções por HIV/metabolismo
2.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587191

RESUMO

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Assuntos
Sistemas CRISPR-Cas , Genes Reporter , Poliadenilação , Precursores de RNA , Humanos , Precursores de RNA/metabolismo , Precursores de RNA/genética , Células HEK293 , Genoma Humano , RNA Polimerase II/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Clivagem do RNA
3.
Mol Reprod Dev ; 91(4): e23741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616716

RESUMO

Inflammatory damage in ovarian granulosa cells (GCs) is a key mechanism in polycystic ovary syndrome (PCOS), cytoplasmic polyadenylation element binding protein-1 (CPEB1) is important in inflammatory regulation, however, its role in PCOS is unclear. We aim to research the mechanism of CPEB1 in ovarian GCs in PCOS using dehydroepiandrosterone (DHEA)-induced PCOS rat models and testosterone-incubated GC models. The pathophysiology in PCOS rats was analyzed. Quantitative-realtime-PCR, TUNEL, immunohistochemistry, and Western blot were applied for quantification. Additionally, cell counting kit-8, flow cytometry, immunofluorescence, Western blot, and Monodansylcadaverine staining were performed. We found that PCOS rat models exhibited a disrupted estrus cycle, elevated serum levels of testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), increased LH/FSH ratio, and heightened ovarian index. Furthermore, reduced corpus luteum and increased follicular cysts were observed in ovarian tissue. In ovarian tissue, autophagy and apoptosis were activated and CPEB1 was overexpressed. In vitro, CPEB1 overexpression inhibited cell viability and sirtuin-1 (SIRT1), activated tumor necrosis factor-α, and interleukin-6 levels, as well as apoptosis and autophagy; however, CPEB1 knockdown had the opposite effect. In conclusion, overexpression of CPEB1 activated autophagy and apoptosis of ovarian GCs in PCOS.


Assuntos
Síndrome do Ovário Policístico , Animais , Feminino , Ratos , Apoptose , Autofagia , Hormônio Foliculoestimulante Humano , Células da Granulosa , Hormônio Luteinizante , Fatores de Poliadenilação e Clivagem de mRNA/genética , Síndrome do Ovário Policístico/induzido quimicamente , Testosterona , Fatores de Transcrição
4.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648719

RESUMO

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Assuntos
Proteínas de Drosophila , Proteínas de Choque Térmico HSP40 , Memória de Longo Prazo , Animais , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Memória de Longo Prazo/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Corpos Pedunculados/metabolismo , Multimerização Proteica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
5.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416782

RESUMO

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Assuntos
Poliadenilação , Viroses , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Regiões 3' não Traduzidas/genética , Regulação para Baixo , Imunidade/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Viroses/genética , Camundongos , Animais
6.
Int J Biol Macromol ; 260(Pt 2): 129632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253139

RESUMO

Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.


Assuntos
Ciclídeos , Tilápia , Feminino , Animais , Camundongos , Tilápia/genética , Tilápia/metabolismo , Peixe-Zebra/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Poliadenilação , Proteínas do Ovo/metabolismo , Oogênese/genética , Estrogênios , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
7.
Genetics ; 226(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37967370

RESUMO

The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae  Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Poliadenilação e Clivagem de mRNA , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Mutação , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica
9.
J Cell Biol ; 223(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938157

RESUMO

Ubiquitylation and phosphorylation control composition and architecture of the cell separation machinery in yeast and other eukaryotes. The significance of septin sumoylation on cell separation remained an enigma. Septins form an hourglass structure at the bud neck of yeast cells that transforms into a split septin double ring during mitosis. We discovered that sumoylated septins recruit the cytokinesis checkpoint protein Fir1 to the peripheral side of the septin hourglass just before its transformation into the double-ring configuration. As this transition occurs, Fir1 is released from the septins and seamlessly relocates between the split septin rings through synchronized binding to the scaffold Spa2. Fir1 binds and carries the membrane-bound Skt5 on its route to the division plane where the Fir1-Skt5 complex serves as receptor for chitin synthase III.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Septinas , Sumoilação , Fatores de Poliadenilação e Clivagem de mRNA , Citoesqueleto , Saccharomyces cerevisiae/genética , Septinas/genética , Ubiquitinação , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
10.
Proc Natl Acad Sci U S A ; 120(49): e2313356120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015843

RESUMO

Postintegration transcriptional silencing of HIV-1 leads to the establishment of a pool of latently infected cells. In these cells, mechanisms controlling RNA Polymerase II (RNAPII) pausing and premature transcription termination (PTT) remain to be explored. Here, we found that the cleavage and polyadenylation (CPA) factor PCF11 represses HIV-1 expression independently of the other subunits of the CPA complex or the polyadenylation signal located at the 5' LTR. We show that PCF11 interacts with the RNAPII-binding protein WDR82. Knock-down of PCF11 or WDR82 reactivated HIV-1 expression in latently infected cells. To silence HIV-1 transcription, PCF11 and WDR82 are specifically recruited at the promoter-proximal region of the provirus in an interdependent manner. Codepletion of PCF11 and WDR82 indicated that they act on the same pathway to repress HIV expression. These findings reveal PCF11/WDR82 as a PTT complex silencing HIV-1 expression in latently infected cells.


Assuntos
HIV-1 , HIV-1/genética , HIV-1/metabolismo , Transcrição Gênica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Poliadenilação , Latência Viral/genética
11.
Open Biol ; 13(11): 230221, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989222

RESUMO

Eukaryotic pre-mRNA is processed by a large multiprotein complex to accurately cleave the 3' end, and to catalyse the addition of the poly(A) tail. Within this cleavage and polyadenylation specificity factor (CPSF) machinery, the CPSF73/CPSF3 endonuclease subunit directly contacts both CPSF100/CPSF2 and the scaffold protein Symplekin to form a subcomplex known as the core cleavage complex or mammalian cleavage factor. Here we have taken advantage of a stable CPSF73-CPSF100 minimal heterodimer from Encephalitozoon cuniculi to determine the solution structure formed by the first and second C-terminal domain (CTD1 and CTD2) of both proteins. We find a large number of contacts between both proteins in the complex, and notably in the region between CTD1 and CTD2. A similarity is also observed between CTD2 and the TATA-box binding protein (TBP) domains. Separately, we have determined the structure of the terminal CTD3 domain of CPSF73, which also belongs to the TBP domain family and is connected by a flexible linker to the rest of CPSF73. Biochemical assays demonstrate a key role for the CTD3 of CPSF73 in binding Symplekin, and structural models of the trimeric complex from other species allow for comparative analysis and support an overall conserved architecture.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Encephalitozoon cuniculi , Fatores de Poliadenilação e Clivagem de mRNA , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/química , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
12.
Cell Rep ; 42(10): 113197, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777964

RESUMO

Cancer cells usually exhibit shortened 3' untranslated regions (UTRs) due to alternative polyadenylation (APA) to promote cell proliferation and migration. Upregulated CPSF6 leads to a systematic prolongation of 3' UTRs, but CPSF6 expression in tumors is typically higher than that in healthy tissues. This contradictory observation suggests that it is necessary to investigate the underlying mechanism by which CPSF6 regulates APA switching in cancer. Here, we find that CPSF6 can undergo liquid-liquid phase separation (LLPS), and elevated LLPS is associated with the preferential usage of the distal poly(A) sites. CLK2, a kinase upregulated in cancer cells, destructs CPSF6 LLPS by phosphorylating its arginine/serine-like domain. The reduction of CPSF6 LLPS can lead to a shortened 3' UTR of cell-cycle-related genes and accelerate cell proliferation. These results suggest that CPSF6 LLPS, rather than its expression level, may be responsible for APA regulation in cancer cells.


Assuntos
Neoplasias , Poliadenilação , Regiões 3' não Traduzidas/genética , Proliferação de Células , Regulação da Expressão Gênica , Fatores de Poliadenilação e Clivagem de mRNA/genética , Neoplasias/genética , Humanos , Linhagem Celular Tumoral
13.
Biochem Biophys Res Commun ; 679: 98-109, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37677983

RESUMO

BACKGROUND: Cancer stem cells are one fundamental reason for the high recurrence rate of hepatocellular carcinoma (HCC) and its resistance to treatment. This study explored the mechanism by which SOCS2-AS1 affects HCC cell stemness. METHODS: Stem cells of HCC cell lines Huh7 and SNU-398 were sorted as NANOG-positive by flow cytometry. Stem cell sphere formation ability was detected. Stem cell viability, migration, invasion, and apoptosis were assessed by colony formation assays, Transwell assays, wound-healing assays, and TUNEL assays, respectively. The binding sites for SOCS2-AS1, miR-454-3p, miR-454-3p, and CPEB1 mRNA were assessed by dual-luciferase reporter assays. Quantitative real-time PCR (qPCR) and Western blot studies were performed to evaluate gene expression levels. ChIP and EMSA assays were conducted to confirm that YY1 binds with the SOCS2-AS1 promoter. A subcutaneous xenograft model was used to verify results in vivo. Tumor tissues were analyzed by H&E and TUNEL staining. RESULTS: SOCS2-AS1 was expressed at low levels in NANOG+ HCC stem cells, and HCC patients with a high level of SOCS2-AS1 expression had a higher survival rate. SOCS2-AS1 inhibited HCC cell stemness, migration, and invasion, and increased the cisplatin sensitivity of HCC cells by regulating miR-454-3p/CPEB1. YY1 was confirmed as a transcription factor of SOCS2-AS1, and served to inhibit SOCS2-AS1 transcription. YY1 knockdown suppressed HCC stemness via SOCS2-AS1. The role of SOCS2-AS1 was confirmed in a subcutaneous xenograft model, and SOCS2-AS1 overexpression enhanced the inhibitory effect of cisplatin on HCC in vivo. CONCLUSIONS: YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cisplatino , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética
14.
Nat Commun ; 14(1): 4480, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528120

RESUMO

Cleavage and polyadenylation (CPA) is responsible for 3' end processing of eukaryotic poly(A)+ RNAs and preludes transcriptional termination. JTE-607, which targets CPSF-73, is the first known CPA inhibitor (CPAi) in mammalian cells. Here we show that JTE-607 perturbs gene expression through both transcriptional readthrough and alternative polyadenylation (APA). Sensitive genes are associated with features similar to those previously identified for PCF11 knockdown, underscoring a unified transcriptomic signature of CPAi. The degree of inhibition of an APA site by JTE-607 correlates with its usage level and, consistently, cells with elevated CPA activities, such as those with induced overexpression of FIP1, display greater transcriptomic disturbances when treated with JTE-607. Moreover, JTE-607 causes S phase crisis and is hence synergistic with inhibitors of DNA damage repair pathways. Together, our data reveal CPA activity and proliferation rate as determinants of CPAi-mediated cell death, raising the possibility of using CPAi as an adjunct therapy to suppress certain cancers.


Assuntos
Neoplasias , Poliadenilação , Animais , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética , Neoplasias/genética
15.
RNA ; 29(11): 1738-1753, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37586723

RESUMO

Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA-mediated interference is alleviated by genetic perturbations that elicit precocious lncRNA 3'-processing and transcription termination, such as (i) the inositol pyrophosphate pyrophosphatase-defective asp1-H397A allele, which results in elevated levels of IP8, and (ii) absence of the 14-3-3 protein Rad24. Combining rad24Δ with asp1-H397A causes a severe synthetic growth defect. A forward genetic screen for SRA (Suppressor of Rad24 Asp1-H397A) mutations identified a novel missense mutation (Tyr86Asp) of Pla1, the essential poly(A) polymerase subunit of the fission yeast cleavage and polyadenylation factor (CPF) complex. The pla1-Y86D allele was viable but slow-growing in an otherwise wild-type background. Tyr86 is a conserved active site constituent that contacts the RNA primer 3' nt and the incoming ATP. The Y86D mutation elicits a severe catalytic defect in RNA-primed poly(A) synthesis in vitro and in binding to an RNA primer. Yet, analyses of specific mRNAs indicate that poly(A) tails in pla1-Y86D cells are not different in size than those in wild-type cells, suggesting that other RNA interactors within CPF compensate for the defects of isolated Pla1-Y86D. Transcriptome profiling of pla1-Y86D cells revealed the accumulation of multiple RNAs that are normally rapidly degraded by the nuclear exosome under the direction of the MTREC complex, with which Pla1 associates. We suggest that Pla1-Y86D is deficient in the hyperadenylation of MTREC targets that precedes their decay by the exosome.


Assuntos
RNA Longo não Codificante , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Domínio Catalítico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Longo não Codificante/genética , Mutação , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
16.
Sci Rep ; 13(1): 10974, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414787

RESUMO

The early events of HIV-1 infection involve the transport of the viral core into the nucleus. This event triggers the translocation of CPSF6 from paraspeckles into nuclear speckles forming puncta-like structures. Our investigations revealed that neither HIV-1 integration nor reverse transcription is required for the formation of puncta-like structures. Moreover, HIV-1 viruses without viral genome are competent for the induction of CPSF6 puncta-like structures. In agreement with the notion that HIV-1 induced CPSF6 puncta-like structures are biomolecular condensates, we showed that osmotic stress and 1,6-hexanediol induced the disassembly of CPSF6 condensates. Interestingly, replacing the osmotic stress by isotonic media re-assemble CPSF6 condensates in the cytoplasm of the cell. To test whether CPSF6 condensates were important for infection we utilized hypertonic stress, which prevents formation of CPSF6 condensates, during infection. Remarkably, preventing the formation of CPSF6 condensates inhibits the infection of wild type HIV-1 but not of HIV-1 viruses bearing the capsid changes N74D and A77V, which do not form CPSF6 condensates during infection1,2. We also investigated whether the functional partners of CPSF6 are recruited to the condensates upon infection. Our experiments revealed that CPSF5, but not CPSF7, co-localized with CPSF6 upon HIV-1 infection. We found condensates containing CPSF6/CPSF5 in human T cells and human primary macrophages upon HIV-1 infection. Additionally, we observed that the integration cofactor LEDGF/p75 changes distribution upon HIV-1 infection and surrounds the CPSF6/CPSF5 condensates. Overall, our work demonstrated that CPSF6 and CPSF5 are forming biomolecular condensates that are important for infection of wild type HIV-1 viruses.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Condensados Biomoleculares , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Soropositividade para HIV/metabolismo , HIV-1/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Replicação Viral
17.
Cells ; 12(13)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37443751

RESUMO

Intracellular trafficking plays a critical role in the functioning of highly polarized cells, such as neurons. Transport of mRNAs, proteins, and other molecules to synaptic terminals maintains contact between neurons and ensures the transmission of nerve impulses. Cytoplasmic polyadenylation element binding (CPEB) proteins play an essential role in long-term memory (LTM) formation by regulating local translation in synapses. Here, we show that the 3'UTR of the Drosophila CPEB gene orb2 is required for targeting the orb2 mRNA and protein to synapses and that this localization is important for LTM formation. When the orb2 3'UTR is deleted, the orb2 mRNAs and proteins fail to localize in synaptic fractions, and pronounced LTM deficits arise. We found that the phenotypic effects of the orb2 3'UTR deletion were rescued by introducing the 3'UTR from the orb, another Drosophila CPEB gene. In contrast, the phenotypic effects of the 3'UTR deletion were not rescued by the 3'UTR from one of the Drosophila α-tubulin genes. Our results show that the orb2 mRNAs must be targeted to the correct locations in neurons and that proper targeting depends upon sequences in the 3'UTR.


Assuntos
Proteínas de Transporte , Proteínas de Drosophila , Animais , Proteínas de Transporte/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regiões 3' não Traduzidas/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Poliadenilação/genética , Drosophila/genética , Drosophila/metabolismo , Neurônios/metabolismo
18.
PLoS Biol ; 21(6): e3002164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379316

RESUMO

A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).


Assuntos
Relógios Circadianos , Animais , Humanos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fosforilação , Temperatura
19.
Nucleic Acids Res ; 51(16): 8758-8773, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351636

RESUMO

CF IB/Hrp1 is part of the cleavage and polyadenylation factor (CPF) and cleavage factor (CF) complex (CPF-CF), which is responsible for 3' cleavage and maturation of pre-mRNAs. Although Hrp1 supports this process, its presence is not essential for the cleavage event. Here, we show that the main function of Hrp1 in the CPF-CF complex is the nuclear mRNA quality control of proper 3' cleavage. As such, Hrp1 acts as a nuclear mRNA retention factor that hinders transcripts from leaving the nucleus until processing is completed. Only after proper 3' cleavage, which is sensed through contacting Rna14, Hrp1 recruits the export receptor Mex67, allowing nuclear export. Consequently, its absence results in the leakage of elongated mRNAs into the cytoplasm. If cleavage is defective, the presence of Hrp1 on the mRNA retains these elongated transcripts until they are eliminated by the nuclear exosome. Together, we identify Hrp1 as the key quality control factor for 3' cleavage.


Assuntos
Processamento de Terminações 3' de RNA , Proteínas de Saccharomyces cerevisiae , Fatores de Poliadenilação e Clivagem de mRNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA